Exercice 1

Résoudre le système suivant :

$$\begin{cases} x+y &=& 3\\ \ln(x) + \ln(y) &=& 0 \end{cases}$$

On considère la fonction $f: x \longmapsto x e^{-x}$ définie sur $[0, +\infty[$.

- 1) Étudier les variations de f sur $[0, +\infty[$
- 2) Déterminer la limite de f(x) lorsque x tend vers $+\infty$
- 3) Calculer l'équation de la tangente à la courbe de f en x=0 et en x=1On rappelle que lorsque f est une fonction dérivable, l'équation de la tangente à la courbe de f au point d'abscisse a est

$$y = f'(a)(x - a) + f(a)$$

- 4) Représenter la courbe représentative de f dans un repère, en faisant apparaître les tangentes aux points d'abscisse 0 et 1.
 - Exercice 3

Déterminer l'ensemble de définition des fonctions suivantes :

1)
$$f: x \mapsto \frac{3x+1}{2x+5}$$

$$\frac{c+1}{c+5}$$
 3) $f: x \mapsto \frac{1}{\sqrt{x^2+1}}$

2)
$$f: x \mapsto \ln\left(\frac{x^2 - 3x + 2}{x + 7}\right)$$

4)
$$f: x \mapsto \tan(\exp(x^2))$$

Exercice 4

Pour chacune des fonctions suivantes

- Déterminer l'ensemble de définition
- Étudier les limites aux bornes de l'ensemble de définition et préciser les équations des asymptotes éventuelles.
- Étudier les variations

1)
$$f_1(x) = (x+2)e^{-x}$$

2)
$$f_2(x) = \ln(x+1) - x^2$$

3)
$$f_3(x) = \sqrt{e^x - 1 - x}$$

4)
$$f_4(x) = \ln(2 + \sin x)$$

5)
$$f_5(x) = \ln(\cos^2 x)$$

6)
$$f_6(x) = \sqrt{\tan x}$$

Exercice 5

Étudier l'existence d'asymptotes horizontales pour les fonctions suivantes :

1)
$$f_1(x) = \frac{e^x + 2x}{e^x - x}$$

2)
$$f_2(x) = \frac{\ln x + x^2}{1 - \ln x}$$

3)
$$f_3(x) = \frac{x^2 + x + 1}{1 - 3x}$$

4)
$$f_4(x) = \frac{x^2 + x + e^{2x}}{x^2 - e^x}$$

$$5) f_5 = \frac{(\ln x)^{100}}{\sqrt{x}}$$

6)
$$f_6 = \frac{1 + \sqrt{e^x}}{1 + e^{\sqrt{x}}}$$

Exercice 6

Soit 0 < a < b deux réels fixés. On considère la fonction f définie pour tout $x \in \mathbb{R}$ par

$$f(x) = \sqrt{x+b} - \sqrt{x+a}$$

- 1) Montrer que $f(x) = \frac{b-a}{\sqrt{x+a} + \sqrt{x+b}}$
- 2) En déduire la limite de f(x) lorsque x tend vers $+\infty$.

Soit $n, m \in \mathbb{N}^*$ deux entiers et soit f la fonction définie par

$$\forall x \in]1, +\infty[, \quad f(x) = \frac{x^n - 1}{x^m - 1}$$

- 1) Montrer que $\lim_{x\to 1} \frac{x^n-1}{x-1} = n$ et $\lim_{x\to 1} \frac{x^m-1}{x-1} = m$
- 2) En déduire la limite de f(x) lorsque x tend vers 1.

Soit f la fonction définie sur [0,1] par

$$\forall x \in [0, 1[, f(x)] = \frac{e^{-8x}}{1 - x}$$

Dresser le tableau de variations complet (avec limites) de la fonction f. Représenter la courbe représentative de f dans un repère.

Soit f la fonction définie par :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} e^{-1/x^2} & \text{si } x > 0 \\ 0 & \text{si } x \le 0 \end{cases}$$

- 1) Montrer que f est continue sur \mathbb{R}
- 2) Étudier les asymptotes de f et représenter sa courbe représentative dans un repère.

On considère la fonction $f: x \longmapsto x \sin\left(\frac{1}{x}\right)$.

- 1) Déterminer le domaine de définition de f
- 2) Montrer que f peut se prolonger par continuité en une fonction \widehat{f} continue sur \mathbb{R} .

Soit f la fonction définie par :

$$\begin{array}{c} f: \mathbb{R} \setminus \{1\} \longrightarrow \mathbb{R} \\ x \longmapsto (x-1) \ln(|x-1|) \end{array}$$

Montrer que f peut se prolonger par continuité en une fonction \widehat{f} continue sur \mathbb{R} .

- Exercice 12 -

On considère la fonction $f: x \longmapsto x + \ln x$

- 1) Montrer qu'il existe un unique réel $\alpha \in]0, +\infty[$ tel que $f(\alpha)=0.$
- 2) Donner un encadrement d'amplitude 1 de α

Exercice 13

1) f est la fonction définie sur $[0; +\infty[$ par :

$$f(x) = x e^x - 1$$

- a) Déterminer la limite de la fonction f en $+\infty$ et étudier ses variations.
- b) Démontrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle $[0; +\infty[$
- c) Déterminer le signe de f(x) suivant la valeur de x
- 2) g est la fonction définie sur $[0; +\infty[$ par :

$$g(x) = (x-1)(e^x - 1)$$

- a) Déterminer la limite de la fonction g en $+\infty$ et étudier le sens de variation de g
- b) Montrer que $g(\alpha) = -\frac{(\alpha 1)^2}{\alpha}$

Soit $f:[0,1]\to [0,1]$ une fonction continue. Montrer que f admet un point fixe, c'est à dire qu'il existe un réel $x\in [0,1]$ tel que f(x)=x.

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^{-x^2}}{1+x^2}$.

- 1) Montrer que l'équation $f(x) = \frac{1}{2}$ admet exactement deux solutions dans \mathbb{R} . On note x_1 et x_2 ces solutions.
- 2) Montrer que $x_1 = -x_2$ et que $|x_1| < 1$.

Exercice 16 -

Soit $k \in \mathbb{R}$. Déterminer en fonction de la valeur de k le nombre de solutions de l'équation $x^4 - x^3 = k$.

* * Exercice 17

Montrer que l'équation $\cos(x) = e^{-x^2}$ admet une infinité de solutions.

- Exercice 18

Pour tout $n \in \mathbb{N}$, on note f_n la fonction définie sur [0,1] par $f_n(x) = x^n + x - 1$

- 1) Montrer que pour tout $n \in \mathbb{N}$, il existe un unique réel $x_n \in]0,1[$ tel que $f_n(x_n)=0$.
- 2) Montrer que la suite (x_n) est strictement croissante.
- 3) En déduire que (x_n) converge vers une limite $\ell \leq 1$.
- 4) On suppose que $\ell < 1$. Étudier la la limite de $(f_n(x_n))$ et conclure.

* * Exercice 19 -

On admet dans cet exercice que $0.69 < \ln 2 < 0.7$.

Partie 1

On considère l'application $g:]0; +\infty[\to \mathbb{R}$ définie par $g(x) = x^2 + \ln x$

- 1) Montrer que g est continue et strictement croissante sur $]0;+\infty[$ et déterminer les limites de g en 0 et en $+\infty$
- 2) Montrer que l'équation g(x)=0 admet une unique solution sur $]0;+\infty[$. On note α l'unique solution de cette équation.
- 3) Montrer que $\frac{1}{2} < \alpha < 1$.

Partie 2

On note $I=\left[\frac{1}{2};1\right]$ et on considère l'application $f:I\to\mathbb{R}$ définie par $f(x)=x-\frac{1}{4}x^2-\frac{1}{4}\ln x$

- 4) a) Montrer que f est strictement croissante sur I
 - b) Montrer que $\frac{1}{2} < f(\frac{1}{2}) < f(1) < 1$
 - c) En déduire que $\forall x \in I, \ f(x) \in I$
- 5) On considère la suite (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$
 - a) Calculer u_1
 - b) Montrer que $\forall n \in \mathbb{N}, u_n \in I$
 - c) Montrer que la suite (u_n) est décroissante.
 - d) Montrer que la suite (u_n) converge et que sa limite est α .

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue qui admet une limite finie en $+\infty$ et en $-\infty$. Montrer que f est bornée sur \mathbb{R} .

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1 - e^{3x}}{1 + e^{3x}}$.

- 1) Déterminer $f(\mathbb{R})$
- 2) Montrer que f réalise une bijection de \mathbb{R} vers $f(\mathbb{R})$.
- 3) Déterminer une expression de $f^{-1}(x)$ en fonction de x.

On considère les fonctions chet sh (cosinus et sinus hyperboliques) définies sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad \operatorname{ch}(x) = \frac{e^x + e^{-x}}{2} \quad \text{et} \quad \operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$$

- 1) Montrer que $\forall x \in \mathbb{R}, \ ch^2(x) \sinh^2(x) = 1$
- 2) Étudier la parité de ch et sh
- 3) Montrer que $\forall a, b \in \mathbb{R}$, $\operatorname{ch}(a+b) = \operatorname{ch}(a)\operatorname{ch}(b) + \operatorname{sh}(a)\operatorname{sh}(b)$ et $\operatorname{sh}(a+b) = \operatorname{ch}(a)\operatorname{sh}(b) = \operatorname{sh}(a)\operatorname{ch}(b)$.
- 4) Justifier que ch et sh sont dérivables sur \mathbb{R} et montrer que $\forall x \in \mathbb{R}$, $\operatorname{ch}'(x) = \operatorname{sh}(x)$ et $\operatorname{sh}'(x) = \operatorname{ch}(x)$.
- 5) Montrer que $x \mapsto \operatorname{sh}(x)$ est strictement croissante sur \mathbb{R}
- 6) Étudier les limites de sh(x) en $+\infty$ et en $-\infty$ et en déduire que sh admet une bijection réciproque.
- 7) Déterminer une formule explicite de $sh^{-1}(x)$.
- 8) Justifier que sh^{-1} est dérivable sur \mathbb{R} et montrer que sa dérivée est $x \mapsto \frac{1}{\sqrt{x^2+1}}$.

Exercice 23

Soit $P: \mathbb{R} \to \mathbb{R}, x \longmapsto \sum_{k=0}^n a_k x^k$ une fonction polynôme de degré $n \ge 1$.

Montrer que P est une fonction paire si et seulement si tous ses coefficients de degrés impairs sont nuls. Montrer que P est une fonction impaire si et seulement si tous ses coefficients de degrés pairs sont nuls.

* * Exercice 24

Soit P un polynôme de degré n > 1.

- 1) Montrer que si n est impair, alors P admet au moins une racine réelle.
- 2) Montrer que si n pair, alors P admet un extremum global.

Dans cet exercice, on s'intéresse au problème suivant : étant donné $(a_1, a_2, ..., a_n)$ une famille de n réels distincts, et $b_1, b_2, ..., b_n$ une famille de n réels quelconques, on souhaite déterminer un polynôme P de degré n-1 tel que $\forall k \in [1, n]$, $P(a_k) = b_k$ (c'est un problème **d'interpolation**)).

1) Pour tout $k \in [1, n]$, on pose $L_k = \prod_{\substack{j=1 \ j \neq k}}^n \frac{X - a_j}{a_k - a_j}$ appelé k-ième **polynôme interpolateur de Lagrange**. Montrer que $\forall (k, i) \in [1, n]^2$ on a

$$L_k(a_i) = \begin{cases} 1 & \text{si } i = k \\ 0 & \text{sinon} \end{cases}$$

- 2) Soit $P \in \mathbb{R}_{n-1}[X]$. Montrer que $P = \sum_{k=1}^{n} P(a_k) L_k$.
- 3) En déduire un polynôme qui répond au problème posé.

Montrer que pour tout x > 0, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$

